Abstract
PEDOT: PSS thin films are widely used as transparent coatings in flexible semiconductor devices including solar cells. However, they are not widely used as transparent coatings in combination with crystal substrates. This work shows the possibility of using PEDOT:PSS thin films as a frontal transparent conducting layer in hybrid organic-inorganic Schottky type heterojunctions of the PEDOT:PSS/n‑CdTe, which were prepared by deposition of PEDOT:PSS thin films (using the spin-coating method) on crystalline cadmium telluride substrates. The current-voltage (in a wide temperature range) and capacitance-voltage (at room temperature) characteristics of heterojunctions were measurement and analyzed. It has been established that PEDOT:PSS/n-CdTe heterojunctions have good diode properties with a high rectification ratio RR≈105, a potential barrier height φ0 = 0.95 eV, and series Rs = 91 Ohm and shunt Rsh = 5.7 × 107 Ohm resistances. Analysis of the forward branches of the I–V characteristics of heterojunctions showed that the dominant charge transfer mechanisms are determined by the processes of radiative recombination at low biases (3kT/e <V <0.3 V) and tunneling through a thin depleted layer at high biases (0.3 V <V <0.6 V). Capacity-voltage characteristics are plotted in the Mott-Schottky coordinate, taking into account the influence of series resistance, measured at a frequency of 1 MHz. Used the C-V characteristic was determined the value of the built-in potential Vc = 1.32 V (it correlates well with the cutoff voltage determined from the current-voltage characteristics) and the concentration of uncompensated donors in the n-CdTe substrate ND-NA = 8.79 × 1014 cm-3. Although the photoelectric parameters of unoptimized PEDOT:PSS/n-CdTe heterojunctions are low, their photodiode characteristics (Detectivity D*> 1013 Jones) are very promising for further detailed analysis and improvement. The proposed concept of a hybrid organic-inorganic heterojunction also has potential for use in inexpensive γ- and X-ray detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.