Abstract
The electrical and optical properties of warm dense beryllium along the principal Hugoniot for temperatures from 0.95 eV to 10.65 eV and densities from 3.8 to 6.0 g/cm3 are investigated by using quantum molecular dynamics (QMD) simulations combined with the Kubo-Greenwood formulation. The dc conductivity σdc and the ionization fraction are yielded by fitting the optical conductivity with the Drude-Smith model. The first-principles transport coefficients are compared with results of the Lee-More model and the Brysk model [Plasma Phys. 17, 473 (1975)]. Compared with the QMD result, the Lee-More model underestimates σdc by 87% at low temperatures, approaches the QMD result gradually with the temperature rising, yet still underestimates σdc by 49% corresponding to the temperature 10.65 eV. In the whole temperature range under investigation, the Brysk model overestimates the electronic thermal conductivity κ while the Lee-More model underestimates κ. The differences are reduced with the temperature increasing. At the temperature 10.65 eV, the Brysk κ is still around twice as large as the QMD result, and the Lee-More κ is smaller than the QMD data by about 40%. In addition, QMD Rosseland mean opacities are shown to be three orders of magnitude larger than results of the average-atom model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.