Abstract

Metal-sandwiched zinc oxide (ZnO)/titanium (Ti)/copper (Cu)/Ti/ZnO thin film systems were fabricated using magnetron sputtering technology and then annealed using a rapid thermal annealing system at temperatures from 100 to 400°C. The influence of the Ti film thicknesses and annealing temperatures on the surface morphologies, sheet resistance and optical properties were studied. The surface morphologies change a little with the annealing temperature rises. The sheet resistances reduce with the Ti film thickness or annealing temperature increasing. Both the max transmittance and figure of merit reduce with the increase of Ti film thickness. The max transmittance increases with the temperature increasing from 100 to 300°C and then reduces. However, the figure of merit increases with the temperature increasing which indicates that the metal-sandwiched ZnO/Ti/Cu/Ti/ZnO thin film system annealed at 400°C has the optimal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.