Abstract

A comprehensive first-principles study has been employed to investigate the geometric structures, electrical properties, and optical properties of two-dimensional (2D) Ge/BeO heterostructure. The results show that there is weak interaction between germanene and BeO monolayer via van der Waals force without any site selectivity. Therefore, most of the outstanding properties of germanene are conserved, especially a linear band dispersion near the K point. The energy gap of ∼49 meV can be opened for the heterostructure, which is a pretty large value for the gap opening at room temperature. Meanwhile, the band gap can be tuned by the interlayer distance, external strain, as well as external electric field, and the electric field has been found to be the most effective way (14–382 meV). All of these methods for band gap modulation can maintain the characteristics of a Dirac cone with a linear band dispersion relationship of germanene. Moreover, the enhanced optical properties are also observed after the format...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.