Abstract

Deep levels introduced into n-GaN films by Fe and Cr implantation have been studied by means of optical absorption and microcathodoluminescence spectroscopy measurements and by deep level transient spectroscopy, admittance spectroscopy, and capacitance-voltage profiling. The results are compared with previous measurements on Mn and Co implanted GaN. It is shown that the acceptor levels of substitutional Mn, Co, Fe, and Cr in n-GaN are located, respectively, near Ev+1.6 eV, Ev+1.7 eV, Ev+1.8 eV, and Ev+2 eV, the trend being similar to that observed in GaAs, GaP, and InP. The Fermi level in the implanted region is pinned near deep electron traps at Ec−0.5 eV that are tentatively attributed to complexes between substitutional transition metal ions and native defects such as nitrogen vacancies. It is shown that for all implanted species after 700 °C annealing a damaged region with relatively high resistivity is formed down to the depth of about 1 μm much, exceeding the projected range of implanted ions. This region is enriched with radiation-damage-related defects and is most likely formed by outdiffusion of these defects from the implanted region during annealing. The thickness of this damaged region is shown to be the lowest for Cr implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.