Abstract

An interconnection approach for mechanical stacking of solar cells is described. In this approach, block copolymer-templated fabrication of metal nanoparticle arrays and van der Waals bonding were integrated to design interfaces which permit both high interfacial conductivities and minimal transmission losses upon interconnections of solar cells. A series of electrical and optical characterizations verified that the approach potentially provides resistances of as low as 3.7 Ω-cm2 with transmission losses of less than 2%. The demonstrative two-junction solar cell exhibited promising open-circuit voltage and fill factor, suggesting the possibility of achieving high-efficiency multi-junction solar cells based on this unique strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.