Abstract

A silicon-filament vacuum-sealed incandescent light source has been fabricated using IC technology and subsurface micromachining. The incandescent source consists of a heavily doped p/sup +/ polysilicon filament coated with silicon nitride and enclosed in a vacuum-sealed ( approximately=80-mT) cavity in the silicon-chip surface. The filament is formed beneath the surface and later released using sacrificial etching to obtain a microstructure that is protected from the external environment. The filament is electrically heated to reach incandescence at a temperature near 1400 K. The power required to achieve this temperature (for a filament 510*5*1 mu m) is 5 mW. The emitted optical power is 250 mu W, and the peak in the spectrum distribution is near 2.5 mu m. The radiation approximately follows Lambert's cosine law. The subsurface micromachining technique used to produce the evacuated cavity has applications in other micromechanical devices. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.