Abstract

AbstractDye sensitized solar cells of the Graetzel type are usually fabricated with TiO2 covered with dye after its synthesis as one electrode. ZnO is, aside from TiO2, a promising alternative semiconducting material for solar energy conversion due to its enhanced surface area and a strong attachment of non-aggregated sensitizer dyes. We investigate ZnO/dye electrodes where the dye is already added during the electro-deposition process of the ZnO. We examine the influence of the dye species and the dye concentration on the surface morphology by means of atomic force and scanning electron microscopy imaging. The electrical properties of the films are characterized by means of current-voltage measurements. In order to study the integral properties of the charge carrier transport in the lateral direction of the film we characterized ZnO thin films electro-deposited across an insulating gap between two microstructured electrodes made of gold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call