Abstract

Carbon rich Nano-crystalline grain size tantalum carbide (Ta-C) thin films were prepared by non- reactive simultaneously dual magnetron sputtering. The main purpose of the current work was to investigate the influence of deposition method, deposition power, film thickness and annealing temperature on structural, surface morphology and electrical resistivity of TaC thin films. The experimental result shows that the growth rate of film was about 6.7 nm min−1 and films are growth like spherical structure. The atomic percentage of elements in the films were very sensitive to the deposition power, which even if the small amount of increases in the deposition power of Ta lead the increase of Ta content. However, a small change in Ta percentage did not result in a change in film structure and surface morphology. Annealing temperature did not cause structural changes in the films, but lead small changes in the grain size (range from 7.0 to 9.1 nm) and surface roughness. Resistivity variation of deposited TaC films on the annealing temperature shows random behavior which may cause by the deposition method. Nevertheless, the resistivity of the film decreases first and then increases when the thickness increases from 79.2 nm to 134 nm. Minimum resistivity of film appears at the thickness of 79.2 nm, about 235.2 μΩ.cm. In the end, deposited TaC thin films shows good thermal stability and low enough resistivity for gate electrode application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.