Abstract

Tungsten (W) films are deposited from tungsten hexafluoride on sputter-deposited TiN adhesion layers in a cold-wall chemical vapor deposition reactor. The film resistivity of the W films is found to be thickness dependent. It decreases monotonically with increasing film thickness. Typical resistivity values of 40-nm-thick W films are about 19.3–23.4 μΩ cm, depending on the structure of the underlying TiN layer used. The resistivity of a 980-nm-thick W film is 9.8 μΩ cm. Oxygen and fluorine impurities, as well as structural difference in the W films are found to be the major causes for the resistivity variations. Lowering impurity level and/or increasing W crystallite size can decrease film resistivity. The stress of all the W films is found to be tensile, independent of the structure of the TiN layers. However, the absolute value of the stress is intimately associated with the structure of the TiN layers. The stress values can differ by a factor of more than 2 for the 40-nm-thick W films deposited on the different underlying TiN layers. The amplitude of stress also monotonically decreases with increasing film thickness. Consequently, the difference in stress induced by the difference in the underlying TiN layers gradually disappears as the film thickness increases. A strong correlation between the stress and the film texture is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call