Abstract
AbstractElectrical and mechanical property tests have been used to examine the changes in the carbon black network structure that occur in a filled elastomer at large strains in tension and compression. These changes have been examined both in materials that have no previous loading history and in test pieces that have been subjected to a specific known prestrain. When a previously unstrained, filled elastomer specimen is stretched to moderate extensions, the electrical resistivity increases. This is ascribed to the breakdown of the carbon black network structure. At higher tensile extensions, the resistivity decreases. This reduction in the electrical resistivity is attributed to the alignment of the shaped carbon black aggregates under strain. During unloading, the resistivity behavior is different from that during loading, with the final unloaded electrical resistivity being significantly higher than that measured in the unstrained elastomer. This dramatic change in the electrical properties after unloading is in marked contrast to the relatively modest changes observed in the mechanical behavior. After the first cycle, the electrical behavior becomes much more reversible, and this indicates that the bulk of the damage experienced by the carbon black network is developed during the first cycle. After unloading from a large strain, the electrical anisotropy is small, whereas the mechanical anisotropy is more marked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2079–2089, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.