Abstract

The superconducting and ground state samples of PrFeAsO0.8F0.2 and PrFeAsO have been synthesised via the easy and versatile single step solid state reaction route. X-ray and Reitveld refine parameters of the synthesised samples are in good agreement to the earlier reported value of the structure. The ground state of the pristine compound (PrFeAsO) exhibited a metallic-like step in resistivity below 150 K followed by another step at 12 K. The former is associated with the spin density wave (SDW)-like ordering of Fe spins and later to the anomalous magnetic ordering for Pr moments. Both the resistivity anomalies are absent in case of the superconducting PrFeAsO0.8F0.2 sample. Detailed high field (up to 12 Tesla) electrical and magnetization measurements are carried out for the superconducting PrFeAsO0.8F0.2 sample. The PrFeAsO0.8F0.2 exhibited superconducting onset ( $T_{c}^{\mathrm{onset}}$ ) at around 47 K with T c (ρ=0) at 38 K. Though the $T_{c}^{\mathrm{onset}}$ remains nearly invariant, the T c (ρ=0) is decreased with applied field, and the same is around 23 K under an applied field of 12 Tesla. The upper critical field (H c2) is estimated from the Ginzburg–Landau equation (GL) fitting, which is found to be ∼182 Tesla. Critical current density (J c ), being calculated from high field isothermal magnetization (MH) loops with the help of Beans critical state model, is found to be of the order of 103 A/cm2. Summarily, the superconductivity characterization of the single step synthesised PrFeAsO0.8F0.2 superconductor is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.