Abstract

Yttrium, titanium, and yttrium-titanium getter thin films were elaborated on silicon by coevaporation in ultrahigh vacuum. Y-Ti films exhibit nanometric crystallites size (18–35 nm) leading to a very high grain boundary density, which is a favorable microstructure for activation at low temperature. The yttrium content in Y-Ti alloys influences grain size, resistance against room temperature oxidation, and gettering performance for oxygen. Y-Ti films with an yttrium content higher than 30% show strong oxygen sorption during annealing at low temperature (<300 °C). After 1 h of annealing at 250 °C, it was estimated that the yttrium-based getter films can trap between 0.2 and 0.5 μmol of oxygen per cm2, while no oxygen sorption was detected for a single metal titanium film. This makes Y-Ti getter alloys attractive candidates for the packaging of MEMS under vacuum with a low bonding temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call