Abstract
The thermally induced electrical activation of boron implanted in silicon at fluences ≦1013 cm−2 was studied by the combination of secondary ion mass spectrometry (SIMS) and pulsed capacitance voltage (PCV). After annealing at 900°C for 30 min boron is completely ionized and the contribution of electrically active defects to the electrical profile is negligible. For partly annealed samples (T<900°C) the degree of electrical activation of boron decreases with increasing boron concentration due to the presence of residual defects. The experimental data can be described qualitatively by the first-order kinetics if the influence of residual crystal defects on the electrical activation is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.