Abstract

An electric violin includes a body having a top, bottom and a ribcage situated between the top and bottom. A neck is attached to the body and includes an unfretted fingerboard. A bridge is attached to the body and strings extend from the distal end of the neck over the bridge and are attached to the body. The body includes a narrow portion adjacent the neck enabling easy access to the upper portion of the fingerboard. The fingerboard portion of the neck extends over the body a fixed distance. The underside of the neck includes a projection which defines a first registration point normally associated with the fourth finger position of a violin. The neck also includes a second projection located on the underside of the neck that defines a second registration point for a predetermined fingerboard position, preferably the eighth finger position corresponding to a one octave higher position on the strings. An optional third registration location is defined by a groove located on the underside of the fingerboard where the fingerboard extends over the body and is associated with a predetermined finger position near the extreme upper portion of the neck thereby enabling positive fingering of the strings to produce musical notes on the upper portion of the neck. The bridge includes piezoelectric transducers for detecting vibrations of the strings and producing corresponding electrical signals. The transducers are connected to amplifier electronics contained within the body of the violin. Electrical connectors mounted on the ribcage of the violin enable connection of the amplifiers within the body to external power amplifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call