Abstract
Electric vehicles (EVs) will help to decarbonize energy systems. However, their connection to on-board level 2 chargers (7.2 kW) at household facilities brings challenges to Distribution Network Operators (DNOs) as they can affect the power quality of low voltage (LV) networks. In order to truly assess these effects, the electrical behavior of the on-board charger in terms of its non-linear content, power demand, and charge rate must be understood first. Nonetheless, most modeling methodologies with this aim result in circuital approaches, and thus, in heavy computational burdens, or assume simplified representations that do not correspond to the reality of the charge. To overcome this, we present a new methodology to model the power quality characteristics of EVs based on measured data from the harmonic spectra of the charger. The model provides a precise and efficient electrical characterization, where probabilistic models of the harmonic spectra are used to compute the power demand during every stage of the charge. Due to its probabilistic nature, these harmonic spectra are represented using Gaussian Mixture Models. We validate the model contrasting simulated data versus real measured one. Then, we illustrate a case study of the model in a LV network power quality assessment with different EV penetration levels, considering time-series harmonic power flows with 10-min resolution under a Monte Carlo approach. Obtained results revealed an increase in the network chargeability and voltage unbalance, along with an increased content of the third harmonic, which appears to be the most intense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.