Abstract

This paper deals with the Electric Vehicle (EV) Scheduling and Optimal Charging Problem. More precisely, given a fleet of EVs and Combustion Engine Vehicles (CVs), a set of tours to be processed by vehicles and a charging infrastructure, the problem aims to optimise the assignment of vehicles to tours and minimise the charging cost of EVs while considering several operational constraints mainly related to chargers, electricity grid and EVs driving range. We prove that the Electric Vehicle Scheduling and Charging Problem (EVSCP) is NP-hard in the ordinary sense. We provide a mixed-integer linear programming formulation to model the EVSCP and use CPLEX to solve small and medium instances. To solve large instances, we propose two heuristics: a Sequential Heuristic (SH) and a Global Heuristic (GH). The SH considers the EVs sequentially. To each EV, it assigns a set of tours and guarantees the feasibility of a charging schedule. Then, it generates an optimal charging schedule for this EV. However, the GH computes, in the first step, a feasible assignment of tours to all EVs. In the second step, it applies a global Min-Cost-Flow-based charging algorithm to minimise the charging cost of the EVs fleet. To evaluate the efficiency of our solving approaches, computational results on a large set of real and randomly generated test instances are reported and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.