Abstract

This work discusses the electric vehicle (EV) ordered charging planning (OCP) optimization problem. To address this issue, an improved dual-population genetic moth–flame optimization (IDPGMFO) is proposed. Specifically, to obtain an appreciative solution of EV OCP, the design for a dual-population genetic mechanism integrated into moth–flame optimization is provided. To enhance the global optimization performance, the adaptive nonlinear decreasing strategies with selection, crossover and mutation probability, as well as the weight coefficient, are also designed. Additionally, opposition-based learning (OBL) is also introduced simultaneously. The simulation results show that the proposed improvement strategies can effectively improve the global optimization performance. Obviously, more ideal optimization solution of the EV OCP optimization problem can be obtained by using IDPGMFO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.