Abstract

Power batteries are the core of electric vehicles, but minor faults can easily cause accidents; therefore, fault diagnosis of the batteries is very important. In order to improve the practicality of battery fault diagnosis methods, a fault diagnosis method for lithium-ion batteries in electric vehicles based on multi-method fusion of big data is proposed. Firstly, the anomalies are removed and early fault analysis is performed by t-distribution random neighborhood embedding (t-Sne) and wavelet transform denoising. Then, different features of the vehicle that have a large influence on the battery fault are identified by factor analysis, and the faulty features are extracted by a two-way long and short-term memory network method with convolutional neural network. Finally a self-learning Bayesian network is used to diagnose the battery fault. The results show that the method can improve the accuracy of fault diagnosis by about 12% when verified with data from different vehicles, and after comparing with other methods, the method not only has higher fault diagnosis accuracy, but also reduces the response time of fault diagnosis, and shows superiority compared to graded faults, which is more in line with the practical application of engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call