Abstract
Electric vehicles (EVs) penetration growth is essential to reduce transportation-related local pollutants. Most countries are witnessing a rapid development of the necessary charging infrastructure and a consequent increase in EV energy demand. In this context, power demand forecasting is an essential tool for planning and integrating EV charging as much as possible with the electric grid, renewable sources, storage systems, and their management systems. However, this forecasting is still challenging due to several reasons: the still not statistically significant number of circulating EVs, the different users’ behavior based on the car parking scenario, the strong heterogeneity of both charging infrastructure and EV population, and the uncertainty about the initial state of charge (SOC) distribution at the beginning of the charge. This paper aims to provide a forecasting method that considers all the main factors that may affect each charging event. The users’ behavior in different urban scenarios is predicted through their statistical pattern. A similar approach is used to forecast the EV’s initial SOC. A machine learning approach is adopted to develop a battery-charging behavioral model that takes into account the different EV model charging profiles. The final algorithm combines the different approaches providing a forecasting of the power absorbed by each single charging session and the total power absorbed by charging hubs. The algorithm is applied to different parking scenarios and the results highlight the strong difference in power demand among the different analyzed cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.