Abstract

Charging optimization design for Electric Vehicles (EV) is challenging because it must account for various uncertainties and design aspects such as random EVs’ arrivals and departures, battery degradation, and transformer Loss of Life (LoL). Model-free reinforcement learning (RL) can be employed to tackle such the EV charging design where it does not require to explicitly model the environment dynamics and accurately predict relevant system parameters. However, the high complexity involved in conventional RL-based approaches usually limits its application to only small-scale EV charging settings, which is impractical. To overcome this limitation, we employ the factored action based RL method to transform the formulated Markov Decision Process (MDP). Then, we propose novel reward shaping and hybrid learning methods combining the Convolutional Neural Network (CNN) and Proximal Policy Optimization (PPO) algorithm to extract relevant features from high-dimension state space and efficiently solve the transformed MDP problem. Extensive numerical studies demonstrate that the proposed design can be used to control a charging station (CS) supporting a large number of EVs. Moreover, we show that the proposed framework greatly outperforms other baselines including single-agent and multi-agent RL based strategies and a heuristic power scheduling algorithm in terms of the achieved reward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.