Abstract

Electric buses have long been recognized as a promising direction for offering sustainable public transportation services. While range and battery performance constraints have hindered the widespread adoption of electric buses in the past, technological advances make them a prominent and attractive option for public transportation in the future. Still, operational constraints and the need for additional (charging) infrastructure highlight the need for introducing appropriate decision-making tools, tailor-made for supporting the design of transit networks operated by electric buses. This paper focuses on developing and testing a comprehensive route design model for the case of a transit network, operated exclusively by an electric bus fleet (Electric Transit Route Network Design Problem—E-TRNDP). The model is formulated as a bi-level optimization problem, which attempts to jointly design efficient transit routes and locate required charging infrastructure. A multi-objective, particle swarm optimization algorithm, coupled with a mixed linear—integer programming model is used to solve the model. An existing benchmark network is used as a test-bed for the proposed model and solution process; results illustrate that the proposed model and solution method yield realistic design outcomes in an acceptable time frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.