Abstract

The electric resistance of single-walled nanotube mats has been studied systematically under both ambient and high hydrostatic pressures up to 1.5 GPa. Both the temperature dependence of the resistance and the magnetoresistance indicate that electrical transport occurs by variable range hopping, apparently in 2D. We suggest that this unexpected dimensionality arises from a fractal network of tubes and bundles. Under hydrostatic pressure (HP) the resistance still shows 2D variable range hopping and decreases with increasing HP. An irreversible increase in localization length and DOS is induced below 0.5 GPa. The behavior is reversible and due to strong interaction of tubes from 0.5 GPa up to 1.05 GPa. These results indicate that 2D variable range hopping occurs within bundles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call