Abstract
We study electric quantum walks in two dimensions considering Grover, Alternate, Hadamard, and DFT quantum walks. In the Grover walk the behaviour under an electric field is easy to summarize: when the field direction coincides with the x or y axes, it produces a transient trapping of the probability distribution along the direction of the field, while when it is directed along the diagonals, a perfect 2D trapping is frustrated. The analysis of the alternate walk helps to understand the behaviour of the Grover walk as both walks are partially equivalent; in particular, it helps to understand the role played by the existence of conical intersections in the dispersion relations, as we show that when these are removed a perfect 2D trapping can occur for suitable directions of the field. We complete our study with the electric DFT and Hadamard walks in 2D, showing that the latter can exhibit perfect 2D trapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.