Abstract

AbstractThe electric birefringence of collagen solutions has been measured over a wide range of field strength with the pulse technique. The soluble collagen was from rat tail tendon. The solvent used was dilute acetic acid. Very pronounced saturation of the electric birefringence was observed, permitting calculation of the optical anisotropy factor. The Kerr constant was determined by extrapolation to zero field strength. From the dependence on field strength of the birefringence, the permanent dipole moment and the anisotropy of polarizability were separately determined. The contribution of the former to the Kerr constant was found to be twice as large as that of the latter. The same conclusion was obtained from the initial slope of the rise curves of the birefringence at low fields. The permanent dipole moment was 1.5 × 104 Debye, and the anisotropy of polarizability was about 3 × 10−15 cm.3. The magnitude of the latter indicates that the ion atmosphere polarization is important. Effects of added salt and thermal denaturation on the electric birefringence were explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call