Abstract

The electric dichroism of 17 homogeneous DNA fragments, ranging in size from 43 to 4362 base-pairs, has been analyzed in high electric fields. The orientation of the small fragments can be described in terms of an induced dipole moment, whereas the large fragments are oriented according to a constant dipole mechanism. In the intermediate size range, DNA orients according to an induced dipole mechanism at low field strengths and according to a constant dipole mechanism at high field strengths. From these observations we propose an orientation mechanism with a saturating induced dipole. The induced dipole observed at low field strengths is saturated at a field strength Eo within a transition range Em to give a constant dipole moment at high field strengths. These parameters together with the polarizability and the limit reduced dichroism are evaluated by a least-squares analysis of the experimental data. Eo and Em are found to decrease with increasing chain length from Eo approximately 40 kV/cm (Em approximately 14 kV/cm) at 65 base-pairs to 10 kV/cm (6 kV/cm) at 194 base-pairs. The polarizability is found to increase with the square of the chain length, whereas the saturated dipole increases with chain length N at low N and goes to a limit value at high N. The temperature dependence of the orientation parameters is found to be very small. The values obtained for the limit dichroism are between -1.0 and -1.3 for chain lengths between 60 and 1000 base-pairs, whereas values around -1.4 are observed at chain lengths greater than 1000 base-pairs. These data indicate that electric fields extend the contour of DNA strands at high chain lengths from a weakly bent to a more linear form. The variations of the limit dichroism observed for short fragments suggest sequence-dependent differences in the secondary structure of the helix. The experimental results are compared with numerical calculations based on simple polyelectrolyte models. For short fragments the magnitude of several electrochemical parameters can be adequately explained by a polarization of the ion cloud around the DNA molecules. However, these polyelectrolyte models do not adequately describe the observed chain length dependence of the orientation phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call