Abstract

The assembly of synthetic, controllable molecules is one of the goals in nanotechnology. The primary objective of this contribution is to selectively immobilize DNA on gold via electric potential control. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. A new approach based on electric potential was firstly used to control DNA immobilization covalently onto the SAM with the activation of 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) in low ionic strength solution. The influence of electric potential on DNA immobilization was investigated by means of cyclic voltammogram, A.C. impedance, auger electron spectrometer as well as atomic force microscope (AFM) on template-stripped gold surface. The result proves that controlled potential can affect the course of DNA immobilization. More negative potential can restrain the DNA immobilization, while the more positive potential can accelerate the DNA immobilization. It is of great significance for the control of DNA self-assembly and will find wide application in the fields of DNA-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.