Abstract

Magnetization and electric polarization are measured for RbCoBr3 in the presence of an applied high magnetic field. The saturation of magnetization is recognized in the magnetization curve. The g-value of pseudospin and the nearest-neighbor intrachain exchange interaction of RbCoBr3, which has the properties of a quasi-one-dimensional Ising antiferromagnet, are evaluated. The electric polarization parallel to the c-axis under a magnetic field alone and also under the simultaneous application of electric and magnetic fields along the c-axis is observed to increase around the magnetic phase transition point from the ferrimagnetic low-temperature phase to the partially disordered high-temperature phase. Experimental results indicate that the electric polarization is induced through the rearrangement of the spin structure accompanied by the magnetic phase transition under an applied magnetic field. A probable reason for the enhancement of electric polarization is given from the viewpoint of the interplay betw...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call