Abstract

Abinitio calculation of dielectric response with high-accuracy electronic structure methods is a long-standing problem, for which mean-field approaches are widely used and electron correlations are mostly treated via approximated functionals. Here we employ a neural network wave function ansatz combined with quantum MonteCarlo method to incorporate correlations into polarization calculations. On a variety of systems, including isolated atoms, one-dimensional chains, two-dimensional slabs, and three-dimensional cubes, the calculated results outperform conventional density functional theory and are consistent with the most accurate calculations and experimental data. Furthermore, we have studied the out-of-plane dielectric constant of bilayer graphene using our method and reestablished its thickness dependence. Overall, this approach provides a powerful tool to accurately describe electron correlation in the modern theory of polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call