Abstract

An experimental device consisting of a rotating membrane disk with horizontally positioned cation-exchange membrane MK-40 is described. The device’s design makes it possible to simultaneously obtain current-voltage curves (CVC) and dependences of effective transport numbers for ions of electrolyte and water dissociation products on the current density. Partial CVC are calculated and limiting current densities and diffusion layer thickness are determined at various disk rotation rates. At current densities below the limiting value, the disk’s CVC obey regularities of electrodiffusion kinetics. Upon raising the current density further, the salt ion fluxes increase due to a decrease in the effective diffusion layer thickness, which is caused by the emergence in the near-membrane region of a space charge and electroconvection. At high current densities there occur oscillations of the potential jump that are caused by hydrodynamic instability of the near-membrane solution layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call