Abstract

The effect of the electric field on laminar nonpremixed counterflow propane flames was analyzed computationally. The computations were conducted using ANSYS fluent platform associated with a detailed kinetic mechanism. The mechanism was supplemented with a set of three reactions accounting for the consumption/production of three chemi-ions. It was established that the position of the flame could be only controlled through altering the intensity of the applied electric field. The effect of the applied electric field was included within the reactive flow equations via introducing two distinct terms: a body force term that accounts for the electric field effects on the momentum of the reactive mixture, and an extra diffusion term that accounts for the mobility charged species, namely ambipolar diffusion. This study clearly shows that electric force provides a potential for controlling the location of propane flames without affecting their structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.