Abstract

The urban rail transit power supply system is an important part of the urban power distribution network and the power source of the rail transit system. It is responsible for providing safe and reliable electrical energy to urban rail trains and power lighting equipment. This paper processes the obtained long-period rail transit power load learning sample data matrix, according to the principle of normalization processing, effectively eliminates irregular data in the sample set and fills in possible missing data, thereby eliminating bad data or fake data for model learning. Moreover, this avoids the generation of huge errors that cause exponential growth in the model due to the increase in the learning sample size and the irregularity of the data. According to the characteristics of power load, this paper comprehensively considers the influence of temperature and date type on the maximum daily load, applies the fuzzy neural network model to the long-period load forecasting of long-period rail transit, and introduces the whole process of establishing the forecasting model in detail. Through detailed analysis of the actual data provided by the EUNITE network, the relevant factors affecting the daily maximum load were determined, and then the appropriate fuzzy input was selected to establish the corresponding fuzzy neural network prediction model, and a relatively ideal prediction result was obtained. The experimental results fully proved the great potential of fuzzy neural network in long-term power load forecasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call