Abstract

We study the effect of translational-rotational hydrodynamic coupling on the transient electric linear dichroism of DNA fragments in aqueous solution. As opposed to previous theoretical works, where analytic solutions valid in the limit of low electric field were reported, we present here a numerical approach which allows to obtain numerical results valid independently from the applied electric field strength. Numerical procedures here used are an extension to the transient-state of those developed in a previous work for the study of the problem in the steady-state. The molecular orientational processes induced by an electric field is characterized with statistical arguments solving the Fokker-Planck equation by means of the finite difference method to know the orientational distribution function of molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.