Abstract

For electromagnetic launchers, most of the effort is directed toward improved computational tools, exploitation of these tools for detailed understanding of transient electrodynamic phenomena, novel diagnostics, and experiments to resolve remaining critical issues such as transition from solid to arc contacts in railguns, improved computational techniques for pulsed power systems, and application of these tools to design new high-energy pulsed-power sources. New methods of testing and determining the critical properties of advanced materials, such as composites, are being developed to enable these materials to be evaluated in extreme thermal and electromechanical environments. Additionally, the U.S. Navy is also in the process of initiating hypervelocity electromagnetic launch efforts for extremely long-range artillery systems employing high-G novel projectiles. Other applications of electric launch technology, such as hypervelocity powder deposition and electromagnetic gun launch to space, continue to offer new and interesting opportunities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call