Abstract

Antiferroelectric ceramics can realize ultra-high energy storage, which benefits from transformation between an antiferroelectric phase and a ferroelectric phase. Understanding the mechanism of such phase transition is the key point for building the structure-property correlation. Here, we report the observation of electric-induced devil’s staircase in the course of antiferroelectric–ferroelectric phase transition in PbZrO3-based antiferroelectric ceramics by in situ transmission electron microscopy. The dynamic evolution as-revealed in both reciprocal- and real-space involves stepwise rather than monotonic increase in modulation periods along with simultaneous proliferation of nanodomains. Desynchrony of phase transition is observed for incommensurate domains with different initial modulation periods within a single antiferroelectric domain. Then, the synergistic effect of the devil's staircase and as small as possible the initial modulation period is believed to contribute to the superior energy-storage performance. These findings will be helpful for the development of theories for antiferroelectric–ferroelectric phase transition and the design of high-power antiferroelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.