Abstract

From VHF backscatter radar measurements at Thumba (dip: 56′S) of the phase velocities of type II irregularities in the equatorial electrojet (EEJ), electric field ( E y ) values are estimated for different times of the day. Using the electric field values thus deduced and the Pedersen and Hall conductivities calculated using model values of electron densities and the collision frequencies of ions and electrons, the height integrated current intensity in the EEJ is estimated. The surface level geomagnetic field perturbation ΔH produced by this ionospheric current is then calculated. The calculated values of ΔH are compared with observed values of ΔH (after subtracting the magnetospheric contribution of D st ) for a number of days. The comparisons show good agreement between observed ΔH values and those calculated from measured electric fields. The agreement is found to be good even when type I irregularities are present at higher altitudes in the EEJ. This comparative study demonstrates the validity of estimating electric field values from VHF radar measurements and it indicates the possibility of deducing electric field values from ground level ΔH values, at least for statistical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.