Abstract

BackgroundSpatial heterogeneity in repolarization plays an important role in generating and sustaining cardiac arrhythmias. Reliable determination of repolarization times remains challenging. ObjectivesThe goal of this study was to improve processing of densely sampled noncontact unipolar electrograms to yield reliable high-resolution activation and repolarization maps. MethodsEndocardial noncontact unipolar electrograms were both simulated and recorded in pig left ventricle. Electrical activity on the endocardial surface was processed in terms of a pseudo-electric field. Activation and repolarization times were calculated by using an amplitude-weighted average on QRS and T waves (ie, the E-field method). This was compared vs the conventional Wyatt method on unipolar electrograms. Timing maps were validated against timing on endocardial action potentials in a simulation study. In vivo, activation and repolarization times determined by using this alternative E-field method were validated against simultaneously recorded endocardial monophasic action potentials (MAPs). ResultsSimulation showed that the E-field method provides viable measurements of local endocardial action potential activation and repolarization times. In vivo, correlation of E-field activation times with MAP activation times (rE = 0.76; P < 0.001) was similar to those of Wyatt (rWyatt = 0.80, P < 0.001; P[h1:rE > rWyatt] = 0.82); for repolarization times, correlation improved significantly (rE = 0.96, P < 0.001; rWyatt = 0.82, P < 0.001; P[h1:rE > rWyatt] < 0.00001). This resulted in improved correlations of activation-repolarization intervals to endocardial action potential duration on MAP (rE = 0.96, P < 0.001; rWyatt = 0.86, P < 0.001; P[h1:rE > rWyatt] < 0.00001). Spatial beat-to-beat variation of repolarization could only be calculated by using the E-field methodology and correlated well with the MAP beat-to-beat variation of repolarization (rE = 0.76; P = 0.001). ConclusionsThe E-field method substantially enhances information from endocardial noncontact electrogram data, allowing for dense maps of activation and repolarization times and derived parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call