Abstract

This Letter presents a nonlocal study on the electric-field-tunable edge transport in h-BN-encapsulated dual-gated Bernal-stacked (ABA) trilayer graphene across various displacement fields (D) and temperatures (T). Our measurements revealed that the nonlocal resistance (R_{NL}) surpassed the expected classical Ohmic contribution by a factor of at least 2 orders of magnitude. Through scaling analysis, we found that the nonlocal resistance scales linearly with the local resistance (R_{L}) only when the D exceeds a critical value of ∼0.2 V/nm. Additionally, we observed that the scaling exponent remains constant at unity for temperatures below the bulk-band gap energy threshold (T<25 K). Further, the value of R_{NL} decreases in a linear fashion as the channel length (L) increases. These experimental findings provide evidence for edge-mediated charge transport in ABA trilayer graphene under the influence of a finite displacement field. Furthermore, our theoretical calculations support these results by demonstrating the emergence of dispersive edge modes within the bulk-band gap energy range when a sufficient displacement field is applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call