Abstract

Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation due to Joule heating. Electric-field switching of magnon spin current without charge current is highly preferred but challenging to realize. By integrating magnonic and piezoelectric materials, the manipulation of the magnon spin current generated by the spin Seebeck effect in the ferrimagnetic insulator Gd3 Fe5 O12 (GdIG) film on a piezoelectric substrate is demonstrated. Reversible electric-field switching of magnon polarization without applied charge current is observed. Through strain-mediated magnetoelectric coupling, the electric field induces the magnetic compensation transition between two magnetic states of the GdIG, resulting in its magnetization reversal and the simultaneous switching of magnon spin current. This work establishes a prototype material platform that paves the way for developing magnon logic devices characterized by all electric field reading and writing and reveals the underlying physics principles of their functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call