Abstract

By application of the cleaved-edge overgrowth technique, we realize a two-channel superlattice (SL) device. The structure combines the parallel transport through a low-density SL under almost homogeneous electric field conditions with that through a surface SL (SSL) with large carrier density, which is, without parallel transport, subject to pronounced field instabilities. Direct control of the SSL density allows a separation of both transport contributions. With parallel transport through the low-density SL, the current carried by the SSL is characteristic for a SL with homogeneous field distribution. In particular, it exhibits negative differential conductivity over a wide range of applied electric fields. In contrast, for current only through the SSL clear electric-field instabilities, typical for SLs at high densities are observed. Thus, by means of the parallel transport channel, field instabilities are avoided and transport in high-density SLs with a homogeneous field distribution becomes accessible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.