Abstract

This paper presents theoretical studies of Fano resonance based electric-field (E-field) sensors. E-field sensor based on two electro-optical (EO) materials i.e., barium titanate (BaTiO3, BTO) nanoparticles and relaxor ferroelectric material Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) combined with nanostructure are studied. As for the BTO based E-field sensor, a configuration of filling the BTO nanoparticles into a nano-patterned thin film silicon is proposed. The achieved resonance quality factor (Q) is 11,855 and a resonance induced electric field enhancement factor is of around 105. As for the design of PMN-PT based E-field sensor, a configuration by combining two square lattice air holes in PMN-PT thin film but with one offsetting hole left is chosen. The achieved resonance Q is of 9,273 and an electric field enhancement factor is of around 96. The resonance wavelength shift sensitivity of PMN-PT nanostructured can reach up to 4.768 pm/(V/m), while the BTO based nanostructure has a sensitivity of 0.1213 pm/(V/m). If a spectrum analyzer with 0.1 pm resolution is considered, then the minimum detection of the electric field Emin is 20 mV/m and 0.82 V/m for PMN-PT and BTO based nanostructures, respectively. The nano-patterned E-field sensor studied here are all dielectric, it has therefore the advantage of large measurement bandwidth, high measurement fidelity, high spatial resolution and high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.