Abstract

Fabrication of low-cost, uniform size, and binder-free nanomaterials via contact glow discharge electrolysis (CGDE) for high performance supercapacitors is still a great challenge. In this work, by utilizing the CGDE method as a template, the rapid synthesis of two different morphologies of Mn3O4 nanostructures through a one-step liquid plasma discharge deposition (LPDD) method is proposed and demonstrated. The two uniform nano-octahedron and nano-sheet Mn3O4 structures are grown upon the different electric field orientations under a low DC voltage. The transportation of ions is dependent on the electrical field direction leading to the formation of different nanostructures. Upon the horizontal electric field to the grown substrate, the Ostwald ripening effect is dominant in the growth process of single-crystalline Mn3O4 nano-octahedra, which exhibits high crystallinity and geometric symmetry with a side length of 40 nm. In contrast, the hydrothermal effect assists in the formation of Mn3O4 nano-sheet when the electrical field is perpendicular to the substrate. The continuous transportation of ions promotes the fast growth of ultra-thin and porous Mn3O4 polycrystalline nano-sheets. The binder-free nano-sheet Mn3O4/carbon composite electrode delivers a higher specific capacitive (488 F g−1) and remarkable cycle life (10,000 cycles; 99.1% capacity retention). This work addresses a facial, cost-effective, and scalable path of the production of nanostructures with different morphologies simply by the operation of an electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.