Abstract

Bio-based functional materials can be used to replace or limit the use of synthetic materials sourced from unsustainable sources. However, the potential of such materials remains largely unexplored. In this study, we demonstrate the use of weak AC electric fields to deposit ultra-thin piezoelectric films from cellulose nanocrystals (CNC). This is the first time electric fields are used to realize <50 nm thick uniform bio-based piezoelectric films wherein the bioparticles exhibit unidirectional arrangement. Interestingly, we found that the use of weak AC electric fields of suitable frequencies completely mitigates the coffee ring effect (CRE), which results in defect-free uniform ultra-thin films. Additionally, the electric fields appear to help in realizing unidirectional alignment of particles in the films, which enhances their piezoelectric properties. The method was also tested for chitin nanocrystals (ChNC), which have a similar aspect ratio but bear opposite polarity surface charges, and the influence of the field on coffee ring formation and particle orientation in CNC thin film deposition was validated. The phenomena can be attributed to the constant spatio-temporal curvature of the evaporating liquid film, the transient state between the three-phase contact (TPC) line, the electric field-dependent contact angle, and the permanent and field-induced dipole moments. These factors lead to particle polarization and alignment. The films have an optimum electrical frequency of deposition at which they are continuous and uniformly thin, have unidirectional alignment of particles, and function as a single dipole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.