Abstract

This Perspective discusses oriented external-electric-fields (OEEF), and other electric-field types, as "smart reagents", which enable in principle control over wide-ranging aspects of reactivity and structure. We discuss the potential of OEEFs to control nonredox reactions and impart rate-enhancement and selectivity. An OEEF along the "reaction axis", which is the direction whereby electronic reorganization converts reactants' to products' bonding, will accelerate reactions, control regioselectivity, induce spin-state selectivity, and elicit mechanistic crossovers. Simply flipping the direction of the OEEF will lead to inhibition. Orienting the OEEF off the reaction axis enables control over stereoselectivity, enantioselectivity, and product selectivity. For polar/polarizable reactants, the OEEF itself will act as tweezers, which orient the reactants and drive their reaction. OEEFs also affect bond-dissociation energies and dissociation modes (covalent vs ionic), as well as alteration of molecular geometries and supramolecular aggregation. The "key" to gaining access to this toolbox provided by OEEFs is microscopic control over the alignment between the molecule and the applied field. We discuss the elegant experimental methods which have been used to verify the theoretical predictions and describe various alternative EEF sources and prospects for upscaling OEEF catalysis in solvents. We also demonstrate the numerous ways in which the OEEF effects can be mimicked by use of (designed) local-electric fields (LEFs), i.e., by embedding charges or dipoles into molecules. LEFs and OEEFs are shown to be equivalent and to obey the same ground rules. Outcomes are exemplified for Diels-Alder cycloadditions, oxidative addition of bonds by transition-metal complexes, H-abstractions by oxo-metal species, ionic cleavage of halogen bonds, methane activation, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.