Abstract

Electric field in an atmospheric-pressure microplasma jet, determined by a non-invasive Stark polarization spectroscopy of He 447.1 nm line, is reported in this work. The microplasma jet was driven by a positive pulsed dc power supply with pulse rising time of 60 ns. First, the electric field strength in the streamer head (Eh) is in the range of 9–17 kV/cm. Second, as the streamer head is shooting out of the tube exit, Eh starts to increase rapidly and then decreases after reaching a maximum of 17 kV/cm, indicating the same tendency of streamer velocity. However, a further analysis reveals that the relationship between the electric field and the streamer velocity is non-linear. Third, although the pulse width plays an important role in the control of the length of plasma plume, it has a minor effect on Eh. Fourth, the electric field strength in the secondary discharge is estimated to be less than 6 kV/cm, which further validates the similarity between the secondary discharge and negative discharge. Finally, over atmospheric-pressure plasmas transferring across the glass tube, the electric field in the head of newborn secondary streamer is about 10 kV/cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.