Abstract

We theoretically propose the electric field induced thermal Hall effect of triplons in the quantum dimer magnets XCuCl3 (X=Tl,K), which exhibit ferroelectricity in the Bose-Einstein condensation phase of triplons. The interplay between ferroelectricity and magnetism in these materials leads to the magnetoelectric effect, i.e., an electric-field induced Dzyaloshinskii-Moriya (DM) interaction between spins on the same dimer. We argue that this intradimer DM interaction breaks the symmetry of the system in the absence of an electric field and gives rise to the thermal Hall effect, which can be detected in experimentally accessible electric and magnetic fields. We also show that the thermal Hall effect can be controlled by changing the strength or direction of the electric field. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.