Abstract

Lead-free (Li,Na,K)NbO3-based multilayered piezoceramics were prepared, and their large-signal piezoelectric properties, under combined electrical and mechanical loadings, were characterized from 25 °C to 100 °C. Under zero stress, the multilayer exhibited a high large-signal piezoelectric constant d33∗ (=Smax/Emax) ≈ 350 pm/V with an applied unipolar field of 6 kV/mm. The stress-dependent d33∗, with a unipolar field of 6 kV/mm, featured a pronounced sensitivity to the electric field with an evolving peak at −80 MPa, which was not observed at 100 °C. The disappearance of the evolving peak with increasing temperature suggests a strong influence of the crystallographic phase on the electromechanical properties of (Li,Na,K)NbO3-based multilayers. Further investigations of the stress–strain loop and stress–polarization change revealed that the field-dependent peak below 100 °C was due to the non-180° domain orientation induced by the combined electric field and compressive stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.