Abstract

Magnetostrictive Fe-Ga thin layers were deposited on ⟨110⟩-oriented Pb(Mg1/3Nb2/3)-30%PbTiO3 (PMN-30%PT) substrates by pulsed laser deposition. The as-prepared heterostructures showed columnar arrays aligned in the out-of-plane direction. Transmission electron microscopy revealed nanocrystalline regions within the columnar arrays of the Fe-Ga film. The heterostructure exhibited a strong converse magnetoelectric coupling effect of up to 4.55 × 10−7 s m−1, as well as an electric field tunability of the in-plane magnetic anisotropy. Furthermore, the remanent magnetization states of the Fe-Ga films can be reversibly and irreversibly changed by external electric fields, suggesting a promising and robust application in magnetic random access memories and spintronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.