Abstract

Electric-field (E-field) control of magnetism enabled by multiferroic materials has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme has only been demonstrated at room temperature using BiFeO3 films grown on DyScO3, a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BiFeO3. Here, we demonstrate reversible electric-field-induced switching of the magnetic state of the Co layer in Co/BiFeO3 (BFO) (001) thin film heterostructures fabricated on (001) SrTiO3 (STO) substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches back and forth 45° between the (100) and the (110) crystallographic directions of STO as a result of alternating application of positive and negative voltage pulses between the patterned top Co electrode layer and the (001) SrRuO3 (SRO) layer on which the ferroelectric BFO is epitaxially grown. The coercivity (HC) of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. A mechanism based on the intrinsic magnetoelectric coupling in multiferroic BFO involving projection of antiferromagnetic G-type domains is used to explain the observation. We have also measured the exact canting angle of the G-type domain in strained BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and nonvolatile magnetoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.