Abstract

Two-dimensional colloidal crystals confined within electric field traps on the surface of a dielectrophoretic cell undergo reversible phase transitions that depend on the strength of the applied AC electric field. At low field strengths, the particles adopt a two-dimensional hexagonal close-packed lattice with p6m plane group symmetry and the maximum achievable packing fraction of φ = 0.91. Higher electric field strengths induce dipoles in the particles that provoke a phase transition to structures that depend on the number of particles confined in the trap. Whereas traps containing N = 24 particles transform to a square-packed lattice with p4m symmetry and φ = 0.79 is observed, traps of the same size containing N = 23 particles can also pack in a lattice with p2 symmetry and φ = 0.66. Traps with N = 21, 22, and 25 particles exhibit a mixture of packing structures, revealing the influence of lateral compressive forces, in addition to induced dipole interactions, in stabilizing loosely packed arrangements. These observations permit construction of a phase diagram based on adjustable parameters of electric field strength (0-750 V/cm) and particle number (N = 21-25).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.